Chapter 22 Growth genomics

We sampled growth and ontogeny models developped in the chapter “Growth & Animal models”. Then, we derived growth parameters to be used in association genomics for mono- and poly-genic signals.

22.1 Gmax

We used the following growth model with a lognormal distribution to estimate individual growth potential:

\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \theta_{1,p,i}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\theta_{2,p}})}{\theta_{3,p}}]^2)), \sigma_1) \\ \theta_{1,p,i} \sim \mathcal {logN}(log(\theta_{1,p}), \sigma_2) \\ \theta_{2,p} \sim \mathcal {logN}(log(\theta_2),\sigma_3) \\ \theta_{3,p} \sim \mathcal {logN}(log(\theta_3),\sigma_4) \tag{22.1} \end{equation}\]

We fitted the equivalent model with following priors:

\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \hat{\theta_{1,p,i}}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\hat{\theta_{2,p}}})}{\hat{\theta_{3,p}}}]^2)), \sigma_1) \\ \hat{\theta_{1,p,i}} = e^{log(\theta_{1,p}) + \sigma_2.\epsilon_{1,i}} \\ \hat{\theta_{2,p}} = e^{log(\theta_2) + \sigma_3.\epsilon_{2,p}} \\ \hat{\theta_{3,p}} = e^{log(\theta_3) + \sigma_4.\epsilon_{3,p}} \\ \epsilon_{1,i} \sim \mathcal{N}(0,1) \\ \epsilon_{2,p} \sim \mathcal{N}(0,1) \\ \epsilon_{3,p} \sim \mathcal{N}(0,1) \\ ~ \\ (\theta_{1,p}, \theta_2, \theta_3) \sim \mathcal{logN}^3(log(1),1) \\ (\sigma_1, \sigma_2, \sigma_3, \sigma_4) \sim \mathcal{N}^4_T(0,1) \\ ~ \\ V_P = Var(log(\mu_p)) \\ V_R=\sigma_2^2 \tag{22.2} \end{equation}\]

Table 22.1: Individual growth potential model.
Parameter Estimate Standard error \(\hat R\) \(N_{eff}\)
thetap1[1] 0.5369487 0.0558649 1.052157 208
thetap1[2] 0.5418062 0.0975853 1.014136 304
thetap1[3] 0.3671035 0.0243181 1.033224 229
theta2 0.2545044 0.0806695 1.011055 702
theta3 0.7014813 0.1053930 1.020937 491
sigma[1] 0.1335699 0.0941555 1.508783 22
sigma[2] 0.6703421 0.0406016 1.141318 62
sigma[3] 0.2739054 0.2875370 1.007774 972
sigma[4] 0.1336316 0.2239892 1.008755 1160
lp__ 362.3623923 267.2329411 1.741902 17
Traceplot of model parameters.

Figure 22.1: Traceplot of model parameters.

Pairs of model parameters.

Figure 22.2: Pairs of model parameters.

Energy of the model.

Figure 22.3: Energy of the model.

Species predicted growth curve.

Figure 22.4: Species predicted growth curve.

R2 for Gmax.

Figure 22.5: R2 for Gmax.

Genetic variance partitionning for Gmax.

Figure 22.6: Genetic variance partitionning for Gmax.

22.2 Gmax & Genotype

We used the following growth model with a lognormal distribution to estimate individual growth potential and associated genotypic variation:

\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \theta_{1,p,i}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\theta_{2,p}})}{\theta_{3,p}}]^2)), \sigma_1) \\ \theta_{1,p,i} \sim \mathcal {logN}(log(\theta_{1,p}.a_{1,i}), \sigma_2) \\ \theta_{2,p} \sim \mathcal {logN}(log(\theta_2),\sigma_3) \\ \theta_{3,p} \sim \mathcal {logN}(log(\theta_3),\sigma_4) \\ a_{1,i} \sim \mathcal{MVlogN}(log(1), \sigma_5.K) \tag{22.3} \end{equation}\]

We fitted the equivalent model with following priors:

\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \hat{\theta_{1,p,i}}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\hat{\theta_{2,p}}})}{\hat{\theta_{3,p}}}]^2)), \sigma_1) \\ \hat{\theta_{1,p,i}} = e^{log(\theta_{1,p}.\hat{a_{1,i}}) + \sigma_2.\epsilon_{1,i}} \\ \hat{\theta_{2,p}} = e^{log(\theta_2) + \sigma_3.\epsilon_{2,p}} \\ \hat{\theta_{3,p}} = e^{log(\theta_3) + \sigma_4.\epsilon_{3,p}} \\ \hat{a_{1,i}} = e^{\sigma_5.A.\epsilon_{4,i}} \\ \epsilon_{1,i} \sim \mathcal{N}(0,1) \\ \epsilon_{2,p} \sim \mathcal{N}(0,1) \\ \epsilon_{3,p} \sim \mathcal{N}(0,1) \\ \epsilon_{4,i} \sim \mathcal{N}(0,1) \\ ~ \\ (\theta_{1,p}, \theta_2, \theta_3) \sim \mathcal{logN}^3(log(1),1) \\ (\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5) \sim \mathcal{N}^5_T(0,1) \\ ~ \\ V_P = Var(log(\mu_p)) \\ V_G=\sigma_5^2\\ V_R=\sigma_2^2 \tag{22.4} \end{equation}\]

Table 22.2: Individual growth potential model.
Parameter Estimate Standard error \(\hat R\) \(N_{eff}\)
thetap1[1] 0.5427844 0.0705194 1.002621 1588
thetap1[2] 0.5593631 0.1088714 1.002237 1840
thetap1[3] 0.3484395 0.0303648 1.002741 954
theta2 0.2527690 0.0845444 1.005552 1944
theta3 0.6963378 0.1047527 1.007877 1064
sigma[1] 0.1487772 0.0727287 1.256714 33
sigma[2] 0.4964445 0.1739066 1.098502 57
sigma[3] 0.2800740 0.2970960 1.000608 2252
sigma[4] 0.1381212 0.2356811 1.003299 2446
sigma[5] 0.4759487 0.1820254 1.067011 69
lp__ 138.6716378 192.6501649 1.379743 24
Traceplot of model parameters.

Figure 22.7: Traceplot of model parameters.

Pairs of model parameters.

Figure 22.8: Pairs of model parameters.

Energy of the model.

Figure 22.9: Energy of the model.

Species predicted growth curve.

Figure 22.10: Species predicted growth curve.

R2 for Gmax.

Figure 22.11: R2 for Gmax.

Genetic variance partitionning for Gmax.

Figure 22.12: Genetic variance partitionning for Gmax.

Long legend...

Figure 22.13: Long legend…

Spatial autocorrelogram (Moran's I) of variables and associated genetic multiplicative values.

Figure 22.14: Spatial autocorrelogram (Moran’s I) of variables and associated genetic multiplicative values.

22.3 Gmax, Genotype & Environment

We used the following growth model with a lognormal distribution to estimate individual growth potential and associated genotypic variation:

\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \theta_{1,p,i}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\theta_{2,p}})}{\theta_{3,p}}]^2)), \sigma_1) \\ \theta_{1,p,i} \sim \mathcal {logN}(log(\theta_{1,p}.a_{1,i}. \beta_1.TWI_i.\beta_2.NCI_i), \sigma_2) \\ \theta_{2,p} \sim \mathcal {logN}(log(\theta_2),\sigma_3) \\ \theta_{3,p} \sim \mathcal {logN}(log(\theta_3),\sigma_4) \\ a_{1,i} \sim \mathcal{MVlogN}(log(1), \sigma_5.K) \tag{22.5} \end{equation}\]

We fitted the equivalent model with following priors:

\[\begin{equation} DBH_{y=today,p,i} - DBH_{y=y0,p,i} \sim \\ \mathcal{logN} (log(\sum _{y=y_0} ^{y=today} \hat{\theta_{1,p,i}}.exp(-\frac12.[\frac{log(\frac{DBH_{y,p,i}}{100.\hat{\theta_{2,p}}})}{\hat{\theta_{3,p}}}]^2)), \sigma_1) \\ \hat{\theta_{1,p,i}} = e^{log(\theta_{1,p}.\hat{a_{1,i}}. \beta_1.TWI_i.\beta_2.NCI_i) + \sigma_2.\epsilon_{1,i}} \\ \hat{\theta_{2,p}} = e^{log(\theta_2) + \sigma_3.\epsilon_{2,p}} \\ \hat{\theta_{3,p}} = e^{log(\theta_3) + \sigma_4.\epsilon_{3,p}} \\ \hat{a_{1,i}} = e^{\sigma_5.A.\epsilon_{4,i}} \\ \epsilon_{1,i} \sim \mathcal{N}(0,1) \\ \epsilon_{2,p} \sim \mathcal{N}(0,1) \\ \epsilon_{3,p} \sim \mathcal{N}(0,1) \\ \epsilon_{4,i} \sim \mathcal{N}(0,1) \\ ~ \\ (\theta_{1,p}, \theta_2, \theta_3) \sim \mathcal{logN}^3(log(1),1) \\ (\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5) \sim \mathcal{N}^5_T(0,1) \\ ~ \\ V_P = Var(log(\mu_p)) \\ V_G=\sigma_5^2\\ V_{TWI} = Var(log(\beta_1.TWI_i)) \\ V_{NCI} = Var(log(\beta_2.NCI_i)) \\ V_R=\sigma_2^2 \tag{22.6} \end{equation}\]

Table 22.3: Individual growth potential model.
Parameter Estimate Standard error \(\hat R\) \(N_{eff}\)
thetap1[1] 0.6819703 0.1750196 1.0017710 3771
thetap1[2] 0.4693647 0.1630881 1.0003561 3238
thetap1[3] 0.7133448 0.1741461 1.0009126 3999
beta[1] 1.0338461 0.4773498 1.0009493 5751
beta[2] 1.0231845 0.4821474 0.9998852 6093
theta2 0.2212118 0.0872344 1.0031382 1564
theta3 0.6542952 0.1080025 1.0011451 2755
sigma[1] 0.1302832 0.0953805 1.3708842 22
sigma[2] 0.8841277 0.1185958 1.1145255 81
sigma[3] 0.3078621 0.3262250 1.0020929 2855
sigma[4] 0.1441136 0.2493211 1.0005756 4162
sigma[5] 0.4157660 0.2270843 1.1430011 55
lp__ 184.4453908 241.4955933 1.6103979 13
Traceplot of model parameters.

Figure 22.15: Traceplot of model parameters.

Pairs of model parameters.

Figure 22.16: Pairs of model parameters.

Energy of the model.

Figure 22.17: Energy of the model.

Species predicted growth curve.

Figure 22.18: Species predicted growth curve.

R2 for Gmax.

Figure 22.19: R2 for Gmax.

Genetic variance partitionning for ontogenetic parameters.

Figure 22.20: Genetic variance partitionning for ontogenetic parameters.

22.4 Associations

SNP association to growth potential \(Gmax\) has been assessed per individual with mono- and poly-genic modelling (respectivelly LMM and BSLMM, see methods in environmental genomics) for every populations.

q-value of major effect SNPs associated to individual growth parameters. SNP were detected using linear mixed models (LMM) with individual kiniship as random effect. SNP significance was assessed with Wald test. q-value was obtained correcting mutlitple testing with false discovery rate.

Figure 22.21: q-value of major effect SNPs associated to individual growth parameters. SNP were detected using linear mixed models (LMM) with individual kiniship as random effect. SNP significance was assessed with Wald test. q-value was obtained correcting mutlitple testing with false discovery rate.

Growth parameters distribution for outliers genes.

Figure 22.22: Growth parameters distribution for outliers genes.